The Helmholtz machine

نویسندگان

  • Peter Dayan
  • Geoffrey E. Hinton
  • Radford M. Neal
  • Richard S. Zemel
چکیده

Discovering the structure inherent in a set of patterns is a fundamental aim of statistical inference or learning. One fruitful approach is to build a parameterized stochastic generative model, independent draws from which are likely to produce the patterns. For all but the simplest generative models, each pattern can be generated in exponentially many ways. It is thus intractable to adjust the parameters to maximize the probability of the observed patterns. We describe a way of finessing this combinatorial explosion by maximizing an easily computed lower bound on the probability of the observations. Our method can be viewed as a form of hierarchical self-supervised learning that may relate to the function of bottom-up and top-down cortical processing pathways.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Coupled Helmholtz Machine for PCA

In this letter we present a coupled Helmholtz machine for principal component analysis (PCA), where sub-machines are related through sharing some latent variables and associated weights. Then, we present a wake-sleep PCA algorithm for training the coupled Helmholtz machine, showing that the algorithm iteratively determines principal eigenvectors of a data covariance matrix without any rotationa...

متن کامل

Varieties of Helmholtz Machine

The Helmholtz machine is a new unsupervised learning architecture that uses top-down connections to build probability density models of input and bottom-up connections to build inverses to those models. The wake-sleep learning algorithm for the machine involves just the purely local delta rule. This paper suggests a number of different varieties of Helmholtz machines, each with its own strength...

متن کامل

Improved representations and hardware implementation of the Helmholtz Machine

Probabilistic computing forms a relatively new computational style, of significant practical interest because stochastic behaviour is common and must be taken into accountin in biological and other real-world processes. We examine a particular stochastic ANN architecture, the Helmholtz Machine, investigating its characteristics, with particular respect to its wake-sleep training algorithm, and ...

متن کامل

Using Stochastic Helmholtz Machine for Text Learning

We present an approach for text analysis, especially for topic words extraction and document classification, based on a probabilistic generative model. Generative models are useful since they can extract the underlying causal structure of data objects. For this model, a stochastic Helmholtz machine is used and it is fitted using the wake-sleep algorithm, a simple stochastic learning algorithm. ...

متن کامل

Pulse-stream binary stochastic hardware for neural computation : the Helmholtz Machine

................................................................................V DECLARATION OF ORIGINALITY ........................................... VII ACKNOWLEDGEMENTS........................................................... IX TABLE OF CONTENTS.............................................................. XI TABLE OF FIGURES.................................................................

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural computation

دوره 7 5  شماره 

صفحات  -

تاریخ انتشار 1995